The motion of an electromagnetic wave, through a classically-forbidden region, has recently attracted renewed interest because of its implication with regard to the theoretical and experimental problems of superluminality. From an experimental point of view, many papers provide an evidence of superluminality in different physical systems. Theoretically, the problem of a passage through a forbidden gap has been treated by considering plane waves at oblique incidence into a plane parallel layer of a medium with a refractive index smaller than the index of the surrounding medium, and also confined (Gaussian) beams, still at oblique incidence. In the present paper the case of a Bessel beam is examined, at normal incidence into the layer (Secs. II and III), in the scalar approximation (Sec. IV) and by developing also a vectorial treatment (Sec. V). Conclusions are reported in Sic. VI.
Passage of a Bessel beam through a classically forbidden region
D Mugnai
2001
Abstract
The motion of an electromagnetic wave, through a classically-forbidden region, has recently attracted renewed interest because of its implication with regard to the theoretical and experimental problems of superluminality. From an experimental point of view, many papers provide an evidence of superluminality in different physical systems. Theoretically, the problem of a passage through a forbidden gap has been treated by considering plane waves at oblique incidence into a plane parallel layer of a medium with a refractive index smaller than the index of the surrounding medium, and also confined (Gaussian) beams, still at oblique incidence. In the present paper the case of a Bessel beam is examined, at normal incidence into the layer (Secs. II and III), in the scalar approximation (Sec. IV) and by developing also a vectorial treatment (Sec. V). Conclusions are reported in Sic. VI.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.