Using the de la Vallèe Poussin interpolation at the Chebyshev zeros, the authors construct polynomial interpolating wavelets and give the corresponding decomposition and reconstruction algorithms. The involved matrices can be diagonalized by sine and cosine orthogonal matrices. So the algorithms can be realized using fast sine and cosine transforms.

Wavelet based on de la Vallèe Poussin interpolation

Capobianco MR;Themistoclakis W
2001

Abstract

Using the de la Vallèe Poussin interpolation at the Chebyshev zeros, the authors construct polynomial interpolating wavelets and give the corresponding decomposition and reconstruction algorithms. The involved matrices can be diagonalized by sine and cosine orthogonal matrices. So the algorithms can be realized using fast sine and cosine transforms.
2001
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/292920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact