Using the de la Vallèe Poussin interpolation at the Chebyshev zeros, the authors construct polynomial interpolating wavelets and give the corresponding decomposition and reconstruction algorithms. The involved matrices can be diagonalized by sine and cosine orthogonal matrices. So the algorithms can be realized using fast sine and cosine transforms.
Wavelet based on de la Vallèe Poussin interpolation
Capobianco MR;Themistoclakis W
2001
Abstract
Using the de la Vallèe Poussin interpolation at the Chebyshev zeros, the authors construct polynomial interpolating wavelets and give the corresponding decomposition and reconstruction algorithms. The involved matrices can be diagonalized by sine and cosine orthogonal matrices. So the algorithms can be realized using fast sine and cosine transforms.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


