Several studies have shown how to approximately predict real-world phenomena, such as political elections, by ana- lyzing user activities in micro-blogging platforms. This ap- proach has proven to be interesting but with some limita- tions, such as the representativeness of the sample of users, and the hardness of understanding polarity in short mes- sages. We believe that predictions based on social network analysis can be significantly improved by exploiting machine learning and complex network tools, where the latter pro- vides valuable high-level features to support the former in learning an accurate prediction function.
Twitter for election forecasts: a joint machine learning and complex network approach applied to an italian case study
Coletto M;Lucchese C;Orlando S;Perego R;
2015
Abstract
Several studies have shown how to approximately predict real-world phenomena, such as political elections, by ana- lyzing user activities in micro-blogging platforms. This ap- proach has proven to be interesting but with some limita- tions, such as the representativeness of the sample of users, and the hardness of understanding polarity in short mes- sages. We believe that predictions based on social network analysis can be significantly improved by exploiting machine learning and complex network tools, where the latter pro- vides valuable high-level features to support the former in learning an accurate prediction function.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_328077-doc_103618.pdf
accesso aperto
Descrizione: Twitter for election forecasts
Dimensione
2.39 MB
Formato
Adobe PDF
|
2.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


