Motivated by a class of chance-constrained optimization problems, we explore modifications of the (generalized) Benders' decomposition approach. The chance-constrained problems we consider involve a random variable with an underlying discrete distribution, are convex in the decision variable, but their probabilistic constraint is neither separable nor linear. The variants of Benders' approach we propose exploit advances in cutting-plane procedures developed for the convex case. Specifically, the approach is stabilized in the two ways; via a proximal term/trust region in the L1 norm, or via a level constraint. Furthermore, the approaches can use inexact oracles, in particular informative on-demand inexact ones. The simultaneous use of the two features requires a nontrivial convergence analysis; we provide it under what would seem to be the weakest possible assumptions on the handling of the two parameters controlling the oracle (target and accuracy), strengthening earlier know results. Numerical performance of the approaches are assessed on a class of hybrid robust and chance-constrained conic problems. The numerical results show that the approach has potential, especially for instances that are difficult to solve with standard techniques.

Inexact Stabilized Benders' Decomposition Approaches to Chance-constrained Problems with Finite Support

A Frangioni;
2015

Abstract

Motivated by a class of chance-constrained optimization problems, we explore modifications of the (generalized) Benders' decomposition approach. The chance-constrained problems we consider involve a random variable with an underlying discrete distribution, are convex in the decision variable, but their probabilistic constraint is neither separable nor linear. The variants of Benders' approach we propose exploit advances in cutting-plane procedures developed for the convex case. Specifically, the approach is stabilized in the two ways; via a proximal term/trust region in the L1 norm, or via a level constraint. Furthermore, the approaches can use inexact oracles, in particular informative on-demand inexact ones. The simultaneous use of the two features requires a nontrivial convergence analysis; we provide it under what would seem to be the weakest possible assumptions on the handling of the two parameters controlling the oracle (target and accuracy), strengthening earlier know results. Numerical performance of the approaches are assessed on a class of hybrid robust and chance-constrained conic problems. The numerical results show that the approach has potential, especially for instances that are difficult to solve with standard techniques.
2015
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Benders' decomposition
chance-constrained problems
mixed-integer optimization
nonsmooth optimization
stabilization
inexact function computation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/304556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact