Novelty detection indexes are used in order to identify anomaly in the observation of a phenomenon. We describe the basic idea of kernel principal component analysis, a method which enlightens the existence of a novelty in a measured value comparing it with the one predicted by a model calibrated on training data. Differently from linear PCA, kernel PCA projects the data into an infinite-dimensional space in which novelty detection has usually a better performance.

Kernel PCA for novelty detection

Pozza S
2017

Abstract

Novelty detection indexes are used in order to identify anomaly in the observation of a phenomenon. We describe the basic idea of kernel principal component analysis, a method which enlightens the existence of a novelty in a measured value comparing it with the one predicted by a model calibrated on training data. Differently from linear PCA, kernel PCA projects the data into an infinite-dimensional space in which novelty detection has usually a better performance.
2017
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Kernel principal component analysis
Novelty detection
Structural health monitoring
File in questo prodotto:
File Dimensione Formato  
prod_365431-doc_120546.pdf

accesso aperto

Descrizione: Kernel PCA for novelty detection
Dimensione 244.19 kB
Formato Adobe PDF
244.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/353242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact