Segmenting 3D objects into parts is fundamental to a number of applications in computer graphics, including parametrization, texture mapping, shape matching, morphing, multi-resolution modeling, mesh editing, compression and animation [22]. Broadly speaking, shape segmentation techniques can be divided into geometry-based and semantics-based techniques. Geometry-based segmentations aim to partition the object into parts which have well-defined geometric properties such as size, curvature, or distance to a fitting primitive like a plane. Semantics-based segmentations, in turn, aim at identifying parts which are either visually relevant or meaningful in a given context, such as functional parts on mechanical objects or body parts on human models. Recently, 3D segmentation also drawn attention as a tool for efficient fabrication. The decomposition of objects into parts, indeed, helps solving different issues related to fabrication, such as height field constraints, volume constraints and need for supporting structures. In this work we present a complete survey of segmentation techniques, also highlighting their strengths and weaknesses. Our aim is to produce a handy overview to people who want to approach the problem of segmentation, especially if they want to apply it to digital fabrication.

A survey on 3D shape segmentation with focus on digital fabrication

Giorgi D;Malomo L
2019

Abstract

Segmenting 3D objects into parts is fundamental to a number of applications in computer graphics, including parametrization, texture mapping, shape matching, morphing, multi-resolution modeling, mesh editing, compression and animation [22]. Broadly speaking, shape segmentation techniques can be divided into geometry-based and semantics-based techniques. Geometry-based segmentations aim to partition the object into parts which have well-defined geometric properties such as size, curvature, or distance to a fitting primitive like a plane. Semantics-based segmentations, in turn, aim at identifying parts which are either visually relevant or meaningful in a given context, such as functional parts on mechanical objects or body parts on human models. Recently, 3D segmentation also drawn attention as a tool for efficient fabrication. The decomposition of objects into parts, indeed, helps solving different issues related to fabrication, such as height field constraints, volume constraints and need for supporting structures. In this work we present a complete survey of segmentation techniques, also highlighting their strengths and weaknesses. Our aim is to produce a handy overview to people who want to approach the problem of segmentation, especially if they want to apply it to digital fabrication.
2019
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
3D shape analysis
3D model segmentation
computational fabrication
File in questo prodotto:
File Dimensione Formato  
prod_404656-doc_141102.pdf

solo utenti autorizzati

Descrizione: A Survey on 3D Shape Segmentation with Focus on Digital Fabrication
Dimensione 11.58 MB
Formato Adobe PDF
11.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/365294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact