An important consequence of the ellipsoid method in combinatorial optimization is the possibility of minimizing a submodular function on {0, 1} ? n in polynomial time. In this paper we show that this result can be extended to the case of functions defined on any sublattice of a product space. We also describe a way or representing a sublattice of a product space and give some conditions guaranteeing the existence of an extension of a given submodular or modular function from a sublattice to a larger one. As a consequence of this, we show that the notions of modularity and separability coincide for functions defined on any countable sublattice or a product space.

Minimizing submodular functions on finite sublattices of product spaces

1992

Abstract

An important consequence of the ellipsoid method in combinatorial optimization is the possibility of minimizing a submodular function on {0, 1} ? n in polynomial time. In this paper we show that this result can be extended to the case of functions defined on any sublattice of a product space. We also describe a way or representing a sublattice of a product space and give some conditions guaranteeing the existence of an extension of a given submodular or modular function from a sublattice to a larger one. As a consequence of this, we show that the notions of modularity and separability coincide for functions defined on any countable sublattice or a product space.
1992
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Ellipsoid method
submodular function
File in questo prodotto:
File Dimensione Formato  
prod_413257-doc_145496.pdf

accesso aperto

Descrizione: Minimizing submodular functions on finite sublattices of product spaces
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/371463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact