A theoretical error estimate for quadrature formulas, which depends on four approximations of the integral, is derived. We derive a bound often sharper than the trivial one which requires milder conditions to be satisfied than a similar result previously presented by Laurie. A selection of numerical tests with one dimensional integrals is reported, to show how the error estimate works in practice. It turns out that, for reasonable values of the estimated relative error, we get both reliability and sharpness

Error estimates in local quadrature

Favati P;
1989

Abstract

A theoretical error estimate for quadrature formulas, which depends on four approximations of the integral, is derived. We derive a bound often sharper than the trivial one which requires milder conditions to be satisfied than a similar result previously presented by Laurie. A selection of numerical tests with one dimensional integrals is reported, to show how the error estimate works in practice. It turns out that, for reasonable values of the estimated relative error, we get both reliability and sharpness
1989
Istituto di informatica e telematica - IIT
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
local quadrature
error
File in questo prodotto:
File Dimensione Formato  
prod_418117-doc_147536.pdf

accesso aperto

Descrizione: Error estimates in local quadrature
Dimensione 542.22 kB
Formato Adobe PDF
542.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/375290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact