In questa nota si mostra come, in certe applicazioni legate alle tecnologie dell'informazione per lo studio del patrimonio culturale, possano essere applicati metodi di separazione cieca delle componenti basati sulla sparsità e non sull'indipendenza statistica. Nelle applicazioni in cui sia necessario estrarre da immagini di opere pittoriche o manoscritti delle regioni di interesse isolate spazialmente, le condizioni di sparsità sono teoricamente verificate già nello spazio delle immagini, e non occorre passare a uno spazio trasformato per poterle imporre alla soluzione del problema. Da due algoritmi recentemente proposti in letteratura, sono stati derivati e sperimentati i corrispondenti operanti direttamente nello spazio delle immagini. Uno di essi impone solo il requisito di sparsità, mentre l'altro aggiunge anche un vincolo di incorrelazione. Gli esperimenti sono condotti su due immagini reali, una relativa a un dipinto acquisito nel visibile e nell'infrarosso e una a un manoscritto acquisito su entrambe le facce nelle tre bande rossa, verde e blu dello spettro visibile.

Uso di tecniche di sparse independent component analysis per l'estrazione di regioni di interesse in opere pittoriche e grafiche

Salerno E
2020

Abstract

In questa nota si mostra come, in certe applicazioni legate alle tecnologie dell'informazione per lo studio del patrimonio culturale, possano essere applicati metodi di separazione cieca delle componenti basati sulla sparsità e non sull'indipendenza statistica. Nelle applicazioni in cui sia necessario estrarre da immagini di opere pittoriche o manoscritti delle regioni di interesse isolate spazialmente, le condizioni di sparsità sono teoricamente verificate già nello spazio delle immagini, e non occorre passare a uno spazio trasformato per poterle imporre alla soluzione del problema. Da due algoritmi recentemente proposti in letteratura, sono stati derivati e sperimentati i corrispondenti operanti direttamente nello spazio delle immagini. Uno di essi impone solo il requisito di sparsità, mentre l'altro aggiunge anche un vincolo di incorrelazione. Gli esperimenti sono condotti su due immagini reali, una relativa a un dipinto acquisito nel visibile e nell'infrarosso e una a un manoscritto acquisito su entrambe le facce nelle tre bande rossa, verde e blu dello spettro visibile.
2020
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Sparse Independent Component Analysis
Document Image Analysis
Artwork Diagnosis
Graphic Documentation in Artwork Restoration
File in questo prodotto:
File Dimensione Formato  
prod_420041-doc_148694.pdf

non disponibili

Descrizione: Uso di tecniche di sparse independent component analysis per l'estrazione di regioni di interesse in opere pittoriche e grafiche
Dimensione 19.84 MB
Formato Adobe PDF
19.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/375697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact