Nickel (Ni) is a natural constituent of the Earth's crust and, together with its compounds, it is used in many industrial and commercial applications. At very low doses, Ni carries out many physiological roles in biochemical processes from plants to human, but at high doses, it causes adverse effects on living organisms. Despite many studies on the mechanisms of Ni toxicity are available, the understanding about its toxic effects on marine organisms is still limited. Indeed, only recently, a growing number of studies focused on the effects of Ni on aquatic organisms and the consequently molecular stress responses activated. The sea urchin embryo is a well-established model for eco-toxicological studies in order to evaluate the toxicity of many pollutants, by monitoring morphological perturbations as well as the molecular defense systems adopted to cope with them.
Molecular defense adopted by sea urchin embryos to cope with Nickel
Rosa Bonaventura;Francesca Zito;Caterina Costa;Roberta Russo
2019
Abstract
Nickel (Ni) is a natural constituent of the Earth's crust and, together with its compounds, it is used in many industrial and commercial applications. At very low doses, Ni carries out many physiological roles in biochemical processes from plants to human, but at high doses, it causes adverse effects on living organisms. Despite many studies on the mechanisms of Ni toxicity are available, the understanding about its toxic effects on marine organisms is still limited. Indeed, only recently, a growing number of studies focused on the effects of Ni on aquatic organisms and the consequently molecular stress responses activated. The sea urchin embryo is a well-established model for eco-toxicological studies in order to evaluate the toxicity of many pollutants, by monitoring morphological perturbations as well as the molecular defense systems adopted to cope with them.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


