We introduce two families of symmetric, interpolatory integration formulas on the interval [-1,1]. These formulas, related to the class of recursive monotone stable (RMS) formulas, allow the application of higher order or compound rules with an efficient reuse of computed function values. One family (SM) uses function values computed outside the integration interval, the other one (HR) uses derivative data. These formulas are evaluated using a practical test based on a tecnique for comparing automatic quadrature routines introduced by Lyness and Kaganove and improved by the authors.

New symmetric interpolatory quadrature formulas

Favati P;
1994

Abstract

We introduce two families of symmetric, interpolatory integration formulas on the interval [-1,1]. These formulas, related to the class of recursive monotone stable (RMS) formulas, allow the application of higher order or compound rules with an efficient reuse of computed function values. One family (SM) uses function values computed outside the integration interval, the other one (HR) uses derivative data. These formulas are evaluated using a practical test based on a tecnique for comparing automatic quadrature routines introduced by Lyness and Kaganove and improved by the authors.
1994
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Quadrature formulas
Quadrature and numerical differentiation
File in questo prodotto:
File Dimensione Formato  
prod_408959-doc_143654.pdf

accesso aperto

Descrizione: New symmetric interpolatory quadrature formulas
Dimensione 752.67 kB
Formato Adobe PDF
752.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386592
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact