Unveil the homophilic/heterophilic behaviors that characterize the wiring patterns of complex networks is an important task in social network analysis, often approached studying the assortative mixing of node attributes. Recent works underlined that a global measure to quantify node homophily necessarily provides a partial, often deceiving, picture of the reality. Moving from such literature, in this work, we propose a novel measure, namely Conformity, designed to overcome such limitation by providing a node-centric quantification of assortative mixing patterns. Differently from the measures proposed so far, Conformity is designed to be path-aware, thus allowing for a more detailed evaluation of the impact that nodes at different degrees of separations have on the homophilic embeddedness of a target. Experimental analysis on synthetic and real data allowed us to observe that Conformity can unveil valuable insights from node-attributed graphs.

Conformity: A Path-Aware Homophily Measure for Node-Attributed Networks

Rossetti G;Citraro S;Milli L
2020

Abstract

Unveil the homophilic/heterophilic behaviors that characterize the wiring patterns of complex networks is an important task in social network analysis, often approached studying the assortative mixing of node attributes. Recent works underlined that a global measure to quantify node homophily necessarily provides a partial, often deceiving, picture of the reality. Moving from such literature, in this work, we propose a novel measure, namely Conformity, designed to overcome such limitation by providing a node-centric quantification of assortative mixing patterns. Differently from the measures proposed so far, Conformity is designed to be path-aware, thus allowing for a more detailed evaluation of the impact that nodes at different degrees of separations have on the homophilic embeddedness of a target. Experimental analysis on synthetic and real data allowed us to observe that Conformity can unveil valuable insights from node-attributed graphs.
2020
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Complex Networks
Feature-rich networks
Assortativity
File in questo prodotto:
File Dimensione Formato  
prod_439426-doc_157643.pdf

accesso aperto

Descrizione: Conformity: A Path-Aware Homophily Measure for Node-Attributed Networks
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact