This lecture concerns Probabilistic Graphical Models and, in particular, Bayesian networks. The outline is the following: first, motivation and generalities about Probabilistic Graphical models, then the specific model called Bayesian networks. In more detail, we will talk about the definition of such networks and two main operations: inference (given the BN) and construction of a BN (given data).

Deep Learning 05 - Probabilistic Graphical Models - part 1

Cristina De Castro
2019

Abstract

This lecture concerns Probabilistic Graphical Models and, in particular, Bayesian networks. The outline is the following: first, motivation and generalities about Probabilistic Graphical models, then the specific model called Bayesian networks. In more detail, we will talk about the definition of such networks and two main operations: inference (given the BN) and construction of a BN (given data).
2019
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
probabilistic graphical models
Bayesian networks
deep learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/390243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact