The main aim of this thesis is the analysis of bioinspired kinematic chains controllable both in position and compliance (or stiffness) from a static and a dynamic point of view. In motion control theory, the redundancy of muscles, with respect to the number of degrees of freedom in a typical biomechanical system, permits the formulation of several control strategies. In this work the Feldman quadratic muscular model, proposing a direct connection between the magnitude and the frequency of sub-cortical electrical stimuli and muscular co-activation, is adopted. Two new indicators, the Dynamic Stiffness and Compliance Operators, are defined in a mathematical way by the use of functional analysis. These new indicators allow a theoretical and practical study of the performance of a chain during collisions or under external perturbations. The Dynamic Stiffness Operators can be useful in the treatment of many mechanical problems, as, for example, the estimation of the force generated by the system when it commits an error in terms of its trajectory, fundamental in breakable object manipulation. Instead, the Dynamic Compliance Operator, measuring the deviation from a given trajectory in presence of external perturbations, is defined as the inverse of the Stiffness Operator and is very more complex to calculate explicitly. In order to perform this calculation many mathematical instruments are used. Finally the mathematical theory developed in the thesis is applied to the design of electroactive polymer fiber bundles driven by bioinspired control variables to implement pseudomuscular actuators devoted to the realization of biomimetic movements.
L'obiettivo principale di questa tesi è l'analisi delle catene cinematiche biomimetiche controllabili sia in posizione che in compliance (o stiffness) da un punto di vista statico e dinamico. Nella teoria del controllo del movimento, la ridondanza dei muscoli, rispetto al numero di gradi di libertà in un tipico sistema biomeccanico, consente la formulazione di diverse strategie di controllo. In questo lavoro viene adottato il modello muscolare quadratico di Feldman, che propone una relazione diretta tra la grandezza e la frequenza degli stimoli elettrici sub-corticali e la co-attivazione muscolare. Due nuovi indicatori, gli operatori di stiffness e compliance dinamiche, sono stati definiti matematicamente attraverso strumenti di analisi funzionale. Questi nuovi indicatori consentono uno studio teorico e pratico delle prestazioni di una catena durante le collisioni o sotto perturbazioni esterne. Gli operatori di stiffness dinamica possono essere utili nel trattamento di molti problemi meccanici, come ad esempio la stima della forza generata dal sistema quando commette un errore in termini di traiettoria, fondamentale nella manipolazione di oggetti fragili. Invece, l'operatore di compliance dinamica, che misura la deviazione da una data traiettoria in presenza di perturbazioni esterne, è definito come l'inverso dell'operatore di stiffness dinamica ed è molto più complesso da calcolare esplicitamente. Per eseguire questo calcolo vengono utilizzati molti strumenti matematici. Infine, la teoria matematica sviluppata nella tesi viene applicata alla progettazione di fasci di fibre polimeriche elettroattive guidate da variabili di controllo bio-ispirate per implementare attuatori pseudomuscolari dedicati alla realizzazione di movimenti biomimetici.
Stiffness and Compliance of Kinematic Chains in Motion / Caudai, Claudia. - (22/04/2009).
Stiffness and Compliance of Kinematic Chains in Motion
Claudia Caudai
22/04/2009
Abstract
The main aim of this thesis is the analysis of bioinspired kinematic chains controllable both in position and compliance (or stiffness) from a static and a dynamic point of view. In motion control theory, the redundancy of muscles, with respect to the number of degrees of freedom in a typical biomechanical system, permits the formulation of several control strategies. In this work the Feldman quadratic muscular model, proposing a direct connection between the magnitude and the frequency of sub-cortical electrical stimuli and muscular co-activation, is adopted. Two new indicators, the Dynamic Stiffness and Compliance Operators, are defined in a mathematical way by the use of functional analysis. These new indicators allow a theoretical and practical study of the performance of a chain during collisions or under external perturbations. The Dynamic Stiffness Operators can be useful in the treatment of many mechanical problems, as, for example, the estimation of the force generated by the system when it commits an error in terms of its trajectory, fundamental in breakable object manipulation. Instead, the Dynamic Compliance Operator, measuring the deviation from a given trajectory in presence of external perturbations, is defined as the inverse of the Stiffness Operator and is very more complex to calculate explicitly. In order to perform this calculation many mathematical instruments are used. Finally the mathematical theory developed in the thesis is applied to the design of electroactive polymer fiber bundles driven by bioinspired control variables to implement pseudomuscular actuators devoted to the realization of biomimetic movements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


