An unsupervised segmentation/clustering algorithm is a method for modeling the generation of directly observable visible variables from hidden sources. Each hidden source coop- erates in activating a subset of visible variables, or parts, which, in turn, additively generate the whole. This project aims at applying the versatility of such a method to the semantic analysis of text documents, namely patent applications.

Unsupervised algorithms as a new tool for reclassification and indexing of European Patent Office documents.

Massimo Ladisa
2022

Abstract

An unsupervised segmentation/clustering algorithm is a method for modeling the generation of directly observable visible variables from hidden sources. Each hidden source coop- erates in activating a subset of visible variables, or parts, which, in turn, additively generate the whole. This project aims at applying the versatility of such a method to the semantic analysis of text documents, namely patent applications.
2022
Istituto Applicazioni del Calcolo ''Mauro Picone''
European Patent Office
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact