This report is concerned with the application of a Naive Bayes classification method to the identification of ship types in moderate-resolution SAR images. After a brief presentation of the principles behind the method, a simple implementation and an extensive experimentation on naive geometrical features extracted from a few thousands of targets in the OpenSARShip data set are presented. All the ship chips extracted are derived from IW GRD Sentinel 1 C-band SAR images, accompanied by AIS and MarineTraffic ground-truth data. The ideal performance of this Naive Bayes is evaluated through the standard classification indices, with respect to the ship types that are sufficiently represented in the subsets considered.

Naive bayes for naive geometry: classifying vessels from length and beam

Salerno E
2021

Abstract

This report is concerned with the application of a Naive Bayes classification method to the identification of ship types in moderate-resolution SAR images. After a brief presentation of the principles behind the method, a simple implementation and an extensive experimentation on naive geometrical features extracted from a few thousands of targets in the OpenSARShip data set are presented. All the ship chips extracted are derived from IW GRD Sentinel 1 C-band SAR images, accompanied by AIS and MarineTraffic ground-truth data. The ideal performance of this Naive Bayes is evaluated through the standard classification indices, with respect to the ship types that are sufficiently represented in the subsets considered.
2021
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Ship classification
SAR images
Maritime surveillance
File in questo prodotto:
File Dimensione Formato  
prod_444831-doc_160007.pdf

non disponibili

Descrizione: Nabay_1.pdf
Dimensione 294.34 kB
Formato Adobe PDF
294.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact