Technology-Assisted Review (TAR) refers to the human-in-the-loop machine learning process whose goal is that of maximizing the cost-effectiveness of a review (i.e., the task of labeling items to satisfy an information need). This thesis explores and thoroughly analyzes: the applicability of the SLD algorithm to TAR scenarios; the usage of active learning combined with the MINECORE framework, effectively improving the framework performance; the portability of machine/deep learning models for the production of systematic reviews in empirical medicine. Finally, the thesis proposes a new algorithm, based on SLD, called SALt, which improves the class prevalence estimates on active learning scenarios, with respect to the current state-of-the-art.

Posterior probabilities, active learning, and transfer learning in technology-assisted review / Molinari A.. - (17/05/2023).

Posterior probabilities, active learning, and transfer learning in technology-assisted review

Molinari A
17/05/2023

Abstract

Technology-Assisted Review (TAR) refers to the human-in-the-loop machine learning process whose goal is that of maximizing the cost-effectiveness of a review (i.e., the task of labeling items to satisfy an information need). This thesis explores and thoroughly analyzes: the applicability of the SLD algorithm to TAR scenarios; the usage of active learning combined with the MINECORE framework, effectively improving the framework performance; the portability of machine/deep learning models for the production of systematic reviews in empirical medicine. Finally, the thesis proposes a new algorithm, based on SLD, called SALt, which improves the class prevalence estimates on active learning scenarios, with respect to the current state-of-the-art.
17
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Machine learning
Technology assisted review
Prior probability shift
Systematic review
Andrea Esuli; Fabrizio Sebastiani
File in questo prodotto:
File Dimensione Formato  
prod_481851-doc_198202.pdf

accesso aperto

Descrizione: Posterior probabilities, active learning, and transfer learning in technology-assisted review
Dimensione 5.48 MB
Formato Adobe PDF
5.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/433944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact