This paper presents a partitioned method which crosses the limitations of traditional approaches to clustering of transactional data. A modification of the stanard K-Means algorithm is presented, which has a good scalability on the number of objects and attributes, but can only work with numeric vectors of fixed length.

Clustering transactional data

Giannotti F;
2002

Abstract

This paper presents a partitioned method which crosses the limitations of traditional approaches to clustering of transactional data. A modification of the stanard K-Means algorithm is presented, which has a good scalability on the number of objects and attributes, but can only work with numeric vectors of fixed length.
2002
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Transactional data clustering
K-Means Algoritm
File in questo prodotto:
File Dimensione Formato  
prod_160566-doc_122925.pdf

accesso aperto

Descrizione: Clustering transactional data
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/451047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact