Background: In Kreuz et al., J Neurosci Methods 381, 109703 (2022) two methods were proposed that perform latency correction, i.e., optimize the spike time alignment of sparse neuronal spike trains with well-defined global spiking events. The first one based on direct shifts is fast but uses only partial latency information, while the other one makes use of the full information but relies on the computationally costly simulated annealing. Both methods reach their limits and can become unreliable when successive global events are not sufficiently separated or even overlap. New Method: Here we propose an iterative scheme that combines the advantages of the two original methods by using in each step as much of the latency information as possible and by employing a very fast extrapolation direct shift method instead of the much slower simulated annealing. Results: We illustrate the effectiveness and the improved performance, measured in terms of the relative shift error, of the new iterative scheme not only on si

Latency correction in sparse neuronal spike trains with overlapping global events

Kreuz, T.
Ultimo
2024

Abstract

Background: In Kreuz et al., J Neurosci Methods 381, 109703 (2022) two methods were proposed that perform latency correction, i.e., optimize the spike time alignment of sparse neuronal spike trains with well-defined global spiking events. The first one based on direct shifts is fast but uses only partial latency information, while the other one makes use of the full information but relies on the computationally costly simulated annealing. Both methods reach their limits and can become unreliable when successive global events are not sufficiently separated or even overlap. New Method: Here we propose an iterative scheme that combines the advantages of the two original methods by using in each step as much of the latency information as possible and by employing a very fast extrapolation direct shift method instead of the much slower simulated annealing. Results: We illustrate the effectiveness and the improved performance, measured in terms of the relative shift error, of the new iterative scheme not only on si
2024
Istituto dei Sistemi Complessi - ISC - Sede Secondaria Sesto Fiorentino
Spike train analysis; Latency; Latency correction; Global events; Overlap; SPIKE-synchronization; SPIKE-order; Spike Train Order; Synfire Indicator; Extrapolation; Simulated annealing; Gerbils; Medial superior olive; Interaural Time Difference; Coincidence detection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537799
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact