In this technical report we have designed and developed a Python software suite (U-ProBE: Uncertainty Probabilistic Bayesian Estimate) for analyzing Deep Learning models with predictions affected by uncertainty (i.e., Bayesian Probabilistic Models). The suite is equipped with an intuitive graphical interface that is simple to use even for non-experts and designed to support a growing pool of users who need to evaluate a model’s performance and, above all, its uncertainty.

U-ProBE: Uncertainty Probabilistic Bayesian Estimate

Del Corso G.;Colantonio S.;Caudai C.
2025

Abstract

In this technical report we have designed and developed a Python software suite (U-ProBE: Uncertainty Probabilistic Bayesian Estimate) for analyzing Deep Learning models with predictions affected by uncertainty (i.e., Bayesian Probabilistic Models). The suite is equipped with an intuitive graphical interface that is simple to use even for non-experts and designed to support a growing pool of users who need to evaluate a model’s performance and, above all, its uncertainty.
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Probabilistic Deep Learning
Bayesian Estimate
Uncertainty Quantification
Post-hoc Methods
File in questo prodotto:
File Dimensione Formato  
ISTI-TR-2025-006.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/541062
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact