This document describes a methodology conceived to create ground truth datasets that may be exploited in the implementation of object detection and classification algorithms tailored on the Nephrops norvegicus. In fact, supervised machine learning algorithms usually require considerable amounts of annotated data to carry out the training stage. The greater the size of the annotated dataset, the stronger the required effort from the annotators.
Guidelines for the annotation of Nephrops norvegicus UWTV videos
Papini O.;Cecapolli E.;Domenichetti F.;Martinelli M.;Pieri G.;Reggiannini M.;Zacchetti L.
2025
Abstract
This document describes a methodology conceived to create ground truth datasets that may be exploited in the implementation of object detection and classification algorithms tailored on the Nephrops norvegicus. In fact, supervised machine learning algorithms usually require considerable amounts of annotated data to carry out the training stage. The greater the size of the annotated dataset, the stronger the required effort from the annotators.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
ISTI-TR-2025-009.pdf
accesso aperto
Descrizione: Guidelines for the annotation of Nephrops norvegicus UWTV videos
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


