We report a numerical study addressing the dynamics of compound vesicles confined in a channel under shear flow. The system comprises a smaller vesicle embedded within a larger one and can be used to mimic, for example, leukocytes or nucleate cells. A two-dimensional model, which combines molecular dynamics and mesoscopic hydrodynamics including thermal fluctuations, is adopted to perform an extended investigation. We are able to vary independently the swelling degree and the relative size of vesicles, the viscosities of fluids internal and external to vesicles, and the Capillary number, so to observe a rich dynamical phenomenology which goes well beyond what observed for single vesicles, matching quantitatively with experimental findings. Tank-treading, tumbling, and trembling motions are enriched by dynamical states where inner and outer vesicles can perform different motions. We show that thermal fluctuations are crucial during trembling and swinging dynamics, as observed in experiments. Undulating motion of the external vesicle, characterized by periodic oscillation of the inclination and buckling of the membrane, is observed at high filling fractions. This latter state exhibits features that are shown to depend on the relative size, the swelling degree of both vesicles as well as on thermal noise lacking in previous analytical and numerical studies.

Dynamical behavior of compound vesicles in wall-bounded shear flow

antonio lamura
2025

Abstract

We report a numerical study addressing the dynamics of compound vesicles confined in a channel under shear flow. The system comprises a smaller vesicle embedded within a larger one and can be used to mimic, for example, leukocytes or nucleate cells. A two-dimensional model, which combines molecular dynamics and mesoscopic hydrodynamics including thermal fluctuations, is adopted to perform an extended investigation. We are able to vary independently the swelling degree and the relative size of vesicles, the viscosities of fluids internal and external to vesicles, and the Capillary number, so to observe a rich dynamical phenomenology which goes well beyond what observed for single vesicles, matching quantitatively with experimental findings. Tank-treading, tumbling, and trembling motions are enriched by dynamical states where inner and outer vesicles can perform different motions. We show that thermal fluctuations are crucial during trembling and swinging dynamics, as observed in experiments. Undulating motion of the external vesicle, characterized by periodic oscillation of the inclination and buckling of the membrane, is observed at high filling fractions. This latter state exhibits features that are shown to depend on the relative size, the swelling degree of both vesicles as well as on thermal noise lacking in previous analytical and numerical studies.
2025
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Bari
matematica applicata, fisica matematica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/557605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact