A new method to estimate the Pareto Front (PF) in bi-objective optimization problems is presented. Assuming a continuous PF, the approach, named ROBBO (RObust and Balanced Bi-objective Optimization), needs to sample at most a finite, pre-computed number of PF points. Upon termination, it guarantees that the worst-case approximation error lies within a desired tolerance range, predefined by the decision maker, for each of the two objective functions. Theoretical results are derived, about the worst-case number of PF samples required to guarantee the wanted accuracy, both in general and for specific sampling methods from the literature. A comparative analysis, both theoretical and numerical, demonstrates the superiority of the proposed method with respect to popular ones. The approach is finally showcased in a constrained path-following problem for a 2-axis positioning system and in a steady-state optimization problem for a Continuous-flow Stirred Tank Reactor. An open demo implementation of ROBBO is made available online.

ROBBO: An Efficient Method for Pareto Front Estimation with Guaranteed Accuracy

Roberto Boffadossi
Primo
Writing – Original Draft Preparation
;
Marco Leonesio
Secondo
;
2025

Abstract

A new method to estimate the Pareto Front (PF) in bi-objective optimization problems is presented. Assuming a continuous PF, the approach, named ROBBO (RObust and Balanced Bi-objective Optimization), needs to sample at most a finite, pre-computed number of PF points. Upon termination, it guarantees that the worst-case approximation error lies within a desired tolerance range, predefined by the decision maker, for each of the two objective functions. Theoretical results are derived, about the worst-case number of PF samples required to guarantee the wanted accuracy, both in general and for specific sampling methods from the literature. A comparative analysis, both theoretical and numerical, demonstrates the superiority of the proposed method with respect to popular ones. The approach is finally showcased in a constrained path-following problem for a 2-axis positioning system and in a steady-state optimization problem for a Continuous-flow Stirred Tank Reactor. An open demo implementation of ROBBO is made available online.
2025
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Mathematics - Optimization and Control
Mathematics - Optimization and Control
eess.SY
File in questo prodotto:
File Dimensione Formato  
2506.18004v1.pdf

accesso aperto

Descrizione: Pre-print of submission
Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact