A new method to estimate the Pareto Front (PF) in bi-objective optimization problems is presented. Assuming a continuous PF, the approach, named ROBBO (RObust and Balanced Bi-objective Optimization), needs to sample at most a finite, pre-computed number of PF points. Upon termination, it guarantees that the worst-case approximation error lies within a desired tolerance range, predefined by the decision maker, for each of the two objective functions. Theoretical results are derived, about the worst-case number of PF samples required to guarantee the wanted accuracy, both in general and for specific sampling methods from the literature. A comparative analysis, both theoretical and numerical, demonstrates the superiority of the proposed method with respect to popular ones. The approach is finally showcased in a constrained path-following problem for a 2-axis positioning system and in a steady-state optimization problem for a Continuous-flow Stirred Tank Reactor. An open demo implementation of ROBBO is made available online.
ROBBO: An Efficient Method for Pareto Front Estimation with Guaranteed Accuracy
Roberto BoffadossiPrimo
Writing – Original Draft Preparation
;Marco LeonesioSecondo
;
2025
Abstract
A new method to estimate the Pareto Front (PF) in bi-objective optimization problems is presented. Assuming a continuous PF, the approach, named ROBBO (RObust and Balanced Bi-objective Optimization), needs to sample at most a finite, pre-computed number of PF points. Upon termination, it guarantees that the worst-case approximation error lies within a desired tolerance range, predefined by the decision maker, for each of the two objective functions. Theoretical results are derived, about the worst-case number of PF samples required to guarantee the wanted accuracy, both in general and for specific sampling methods from the literature. A comparative analysis, both theoretical and numerical, demonstrates the superiority of the proposed method with respect to popular ones. The approach is finally showcased in a constrained path-following problem for a 2-axis positioning system and in a steady-state optimization problem for a Continuous-flow Stirred Tank Reactor. An open demo implementation of ROBBO is made available online.| File | Dimensione | Formato | |
|---|---|---|---|
|
2506.18004v1.pdf
accesso aperto
Descrizione: Pre-print of submission
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


