The surfaces of five commercially available titanium implants (Branemark Nobel Biocare, 3i ICE, 3i OSSEOTITE, ITI-TPS, and ITI-SLA) were compared by scanning electron microscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy. All five implant types were screw-shaped and fabricated from commercially pure (cp) titanium, but their surface properties differed both as regards surface morphology and surface chemical composition. The macro- and microstructure of the implant surfaces were investigated by scanning electron microscopy. The surfaces chemical composition was determined using the surface-sensitive analytical techniques of X-ray photoelectron spectroscopy and time-of-flight secondary ion spectrometry. Surface topographies were found to reflect the type of mechanical/chemical fabrication procedures applied by the manufacturers. The titanium oxide (passive) layer thickness was similar (5-6 nm) and typical for oxide films grown at or near room temperature. A variety of elements and chemical compounds not related to the metal composition were found on some implant types. They ranged from inorganic material such as sodium chloride to specific organic compounds believed to be due to contamination during fabrication or storage. The experimental findings are believed to make a contribution to a better understanding of the interplay between industrial fabrication procedure and physico-chemical implant surface properties

Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition

Milella E;
2002

Abstract

The surfaces of five commercially available titanium implants (Branemark Nobel Biocare, 3i ICE, 3i OSSEOTITE, ITI-TPS, and ITI-SLA) were compared by scanning electron microscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy. All five implant types were screw-shaped and fabricated from commercially pure (cp) titanium, but their surface properties differed both as regards surface morphology and surface chemical composition. The macro- and microstructure of the implant surfaces were investigated by scanning electron microscopy. The surfaces chemical composition was determined using the surface-sensitive analytical techniques of X-ray photoelectron spectroscopy and time-of-flight secondary ion spectrometry. Surface topographies were found to reflect the type of mechanical/chemical fabrication procedures applied by the manufacturers. The titanium oxide (passive) layer thickness was similar (5-6 nm) and typical for oxide films grown at or near room temperature. A variety of elements and chemical compounds not related to the metal composition were found on some implant types. They ranged from inorganic material such as sodium chloride to specific organic compounds believed to be due to contamination during fabrication or storage. The experimental findings are believed to make a contribution to a better understanding of the interplay between industrial fabrication procedure and physico-chemical implant surface properties
2002
OSSEOINTEGRATION
BONE
SPECTROSCOPY
IN-VITRO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/10113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact