Genetic Algorithms (GAs) are stochastic optimization heuristics in which searches in solution space are carried out by imitating the population genetics stated in Darwin's theory of evolution. We have focused this work on compact Genetic Algorithms (cGAs), which unlike standard GAs do not manage a population of solutions but only mimics its existence. In this paper we have studied several approaches that can be used to implement parallel cGAs in order to reduce the execution times and to improve the quality of the solutions reached by increasing population sizes. The parallelization models adopted to implement GAs can be classified as: centralized, global, fine grained and coarse grained. For a cGA only the two first models can be applied. Our approach consists in an hybrid model which combines both centralized and global implementations. The cGA incorporates a local search method and has been applied for solving a graph-partitioning problem for solving the Multi-FPGA systems partitioning and placement.

Hybrid Parallelization of a Compact Genetic Algorithm

Baraglia R;
2003

Abstract

Genetic Algorithms (GAs) are stochastic optimization heuristics in which searches in solution space are carried out by imitating the population genetics stated in Darwin's theory of evolution. We have focused this work on compact Genetic Algorithms (cGAs), which unlike standard GAs do not manage a population of solutions but only mimics its existence. In this paper we have studied several approaches that can be used to implement parallel cGAs in order to reduce the execution times and to improve the quality of the solutions reached by increasing population sizes. The parallelization models adopted to implement GAs can be classified as: centralized, global, fine grained and coarse grained. For a cGA only the two first models can be applied. Our approach consists in an hybrid model which combines both centralized and global implementations. The cGA incorporates a local search method and has been applied for solving a graph-partitioning problem for solving the Multi-FPGA systems partitioning and placement.
2003
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Compact Genetic Algorithm
Graph-partitioning
Local search
Hybrid parallelization
File in questo prodotto:
File Dimensione Formato  
prod_90962-doc_123607.pdf

solo utenti autorizzati

Descrizione: Hybrid Parallelization of a Compact Genetic Algorithm
Tipologia: Versione Editoriale (PDF)
Dimensione 326.54 kB
Formato Adobe PDF
326.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/101783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact