Spatio-temporal traces left behind by moving individuals are increasingly available. On the one hand, mining this kind of data is expected to produce interesting behavioral knowledge enabling novel classes of mobility applications; but on the other hand, due to the peculiar nature of position data, mining it creates important privacy concerns. Thus, studying privacy preserving data mining methods for moving object data is interesting and challenging. In this paper, we address the problem of hiding sensitive trajectory patterns from moving objects databases. The aim is to modify the database such that a given set of sensitive trajectory patterns can no longer be extracted, while the others are preserved as much as possible. We provide the formal problem statement and show that it is NP-hard; so we devise heuristics and a polynomial sanitization algorithm. We discuss a possible attack to our model, that exploits the knowledge of the underlying road network, and we enhance our model to protect from this kind of attacks. Experimental results show the effectiveness of our proposal.

Hiding sensitive trajectory patterns

Atzori M;Bonchi F;Giannotti F
2007

Abstract

Spatio-temporal traces left behind by moving individuals are increasingly available. On the one hand, mining this kind of data is expected to produce interesting behavioral knowledge enabling novel classes of mobility applications; but on the other hand, due to the peculiar nature of position data, mining it creates important privacy concerns. Thus, studying privacy preserving data mining methods for moving object data is interesting and challenging. In this paper, we address the problem of hiding sensitive trajectory patterns from moving objects databases. The aim is to modify the database such that a given set of sensitive trajectory patterns can no longer be extracted, while the others are preserved as much as possible. We provide the formal problem statement and show that it is NP-hard; so we devise heuristics and a polynomial sanitization algorithm. We discuss a possible attack to our model, that exploits the knowledge of the underlying road network, and we enhance our model to protect from this kind of attacks. Experimental results show the effectiveness of our proposal.
2007
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Pattern hiding
Privacy
File in questo prodotto:
File Dimensione Formato  
prod_91626-doc_131334.pdf

solo utenti autorizzati

Descrizione: Hiding sensitive trajectory patterns
Tipologia: Versione Editoriale (PDF)
Dimensione 209.41 kB
Formato Adobe PDF
209.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/102586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact