Bu calismada, gurultu altinda imge kaynaklarini ayirma problemi incelenmistir. Problemin ifade edilmesinde Bayesci yaklasima dayali yontemler uzerinde durulmustur. Bayesci imge kaynaklari ayirmada kullanilan gradyene dayali algoritmalarin yerine Markov zinciri Monte Carlo'ya (Markov Chain Monte Carlo: MCMC) dayanan tamamen istatistiksel bir ayristirma yontemi sunulmustur.
In this study, we investigate the image separation problem under noisy environments. In the definition of the problem, the Bayesian approach is considered. We present a fully stochastic method based on Markov chain Monte Carlo (MCMC), instead of other deterministic methods, used in Bayesian image separation.
Markov Zinciri Monte Carlo ile Tam Bayesçi Imge Ayrıstırma (Fully bayesian image separation using Markov chain Monte Carlo)
Kuruoglu E E;
2007
Abstract
In this study, we investigate the image separation problem under noisy environments. In the definition of the problem, the Bayesian approach is considered. We present a fully stochastic method based on Markov chain Monte Carlo (MCMC), instead of other deterministic methods, used in Bayesian image separation.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_91654-doc_131446.pdf
solo utenti autorizzati
Descrizione: Markov Zinciri Monte Carlo
Tipologia:
Versione Editoriale (PDF)
Dimensione
434.76 kB
Formato
Adobe PDF
|
434.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


