We present a physically based model for real-time simulation of thread dynamics. Our model captures all the relevant aspects of the physics of the thread, including quasi-zero elasticit, bending, torsion and self-collision, and it provides output forces for the haptic feedback. The physical properties are modeled in terms of constraints that are iteratively satisfied while the numerical integration is carried out through a Verlet scheme. This approach leads to an unconditionally stable, controllable and computationally light simulation. Our results demonstrate the effectiveness of our model, showing the interaction of the thread with other objects in real time and the creation of complex knots.
A robust method for real-time thread simulation
Pietroni N;Ganovelli F;
2007
Abstract
We present a physically based model for real-time simulation of thread dynamics. Our model captures all the relevant aspects of the physics of the thread, including quasi-zero elasticit, bending, torsion and self-collision, and it provides output forces for the haptic feedback. The physical properties are modeled in terms of constraints that are iteratively satisfied while the numerical integration is carried out through a Verlet scheme. This approach leads to an unconditionally stable, controllable and computationally light simulation. Our results demonstrate the effectiveness of our model, showing the interaction of the thread with other objects in real time and the creation of complex knots.File | Dimensione | Formato | |
---|---|---|---|
prod_91730-doc_122892.pdf
solo utenti autorizzati
Descrizione: A robust method for real-time thread simulation
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.