Core-shell iron oxide-gold nanoparticles (Fe3O4@Au) can be considered a smart platform for polyvalent presentation on account of their globular shape, tunable size, facile surface chemistry, and biocompatibility. We reported the synthesis and the characterization of Fe3O4@Au nanoparticles with transmission electron microscopy (TEM), dynamic light scattering (DLS), ultraviolet visible spectroscopy (UV-Vis), and we investigated their applicability as contrast agents for Magnetic Resonance Imaging (MRI). The measurement of longitudinal and transverse relaxation times of water protons in homogeneous aqueous dispersions of Fe3O4@Au nanoparticles with biocompatible coating at different concentrations allowed the assessment of longitudinal (r1) and transverse (r2) relaxivities at 1.5 and 3 T. The use of conjugated Fe3O4@Au nanoparticles as negative contrast agents could open up new perspectives for the development of novel tools for nanomedicine and for targeted delivery-MRI contrast enhancement systems and photo-optical applications in biomedicine.
Characterization of iron oxide-gold core-shell multifunctional nanoparticles in biomedical imaging
Luca Menichetti;Daniela Arosio;Francesco Conversano;Sergio Casciaro;
2011
Abstract
Core-shell iron oxide-gold nanoparticles (Fe3O4@Au) can be considered a smart platform for polyvalent presentation on account of their globular shape, tunable size, facile surface chemistry, and biocompatibility. We reported the synthesis and the characterization of Fe3O4@Au nanoparticles with transmission electron microscopy (TEM), dynamic light scattering (DLS), ultraviolet visible spectroscopy (UV-Vis), and we investigated their applicability as contrast agents for Magnetic Resonance Imaging (MRI). The measurement of longitudinal and transverse relaxation times of water protons in homogeneous aqueous dispersions of Fe3O4@Au nanoparticles with biocompatible coating at different concentrations allowed the assessment of longitudinal (r1) and transverse (r2) relaxivities at 1.5 and 3 T. The use of conjugated Fe3O4@Au nanoparticles as negative contrast agents could open up new perspectives for the development of novel tools for nanomedicine and for targeted delivery-MRI contrast enhancement systems and photo-optical applications in biomedicine.File | Dimensione | Formato | |
---|---|---|---|
prod_201618-doc_44481.pdf
solo utenti autorizzati
Descrizione: Paper
Dimensione
824.94 kB
Formato
Adobe PDF
|
824.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.