The post-fabrication control of evanescent tunnelling in photonic crystal molecules is demonstrated through the combination of selective infiltration and oxidation. By laser non thermal oxidation, we reduce the photonic coupling by more than 30% while by means of water micro-infiltration, we increase it by 28%. Fine-tuning of the photonic coupling is achieved by low-power laser oxidation and forced evaporation, opening the route to post-fabrication control of array of coupled cavities.

"Post-fabrication control of evanescent tunnelling in photonic crystal molecules"

F Riboli;A Gerardino;
2012

Abstract

The post-fabrication control of evanescent tunnelling in photonic crystal molecules is demonstrated through the combination of selective infiltration and oxidation. By laser non thermal oxidation, we reduce the photonic coupling by more than 30% while by means of water micro-infiltration, we increase it by 28%. Fine-tuning of the photonic coupling is achieved by low-power laser oxidation and forced evaporation, opening the route to post-fabrication control of array of coupled cavities.
2012
Istituto di fotonica e nanotecnologie - IFN
Photonic Crystal cavities
Waveguides
Coupled modes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/11165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact