We demonstrate the possibility of producing Au/SiO(2) core-shell nanoparticles by nanosecond laser irradiation of thin (5 and 20 nm) Au films on Si. The Au/Si eutectic reaction and dewetting process caused by the fast melting and solidification dynamics induced by the nanosecond laser irradiations are investigated as the origin of the formation of core-shell nanoparticles. Using several microscopic techniques (Rutherford backscattering spectrometry, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and energy filtered transmission electron microscopy) the formation and evolution of the core-shell structures are investigated as a function of the laser fluence in the 500-1500 mJ cm(-2) range for both film thicknesses. In particular, the mean height and diameter and surface density evolution of the core-shell structures are quantified and correlated to the laser fluence and Au film thickness.

Novel approach to the fabrication of Au/silica core-shell nanostructures based on nanosecond laser irradiation of thin Au films on Si

Ruffino F;Romano L;Bongiorno C;Grimaldi MG
2012

Abstract

We demonstrate the possibility of producing Au/SiO(2) core-shell nanoparticles by nanosecond laser irradiation of thin (5 and 20 nm) Au films on Si. The Au/Si eutectic reaction and dewetting process caused by the fast melting and solidification dynamics induced by the nanosecond laser irradiations are investigated as the origin of the formation of core-shell nanoparticles. Using several microscopic techniques (Rutherford backscattering spectrometry, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and energy filtered transmission electron microscopy) the formation and evolution of the core-shell structures are investigated as a function of the laser fluence in the 500-1500 mJ cm(-2) range for both film thicknesses. In particular, the mean height and diameter and surface density evolution of the core-shell structures are quantified and correlated to the laser fluence and Au film thickness.
2012
Istituto per la Microelettronica e Microsistemi - IMM
GOLD-FILMS
PARTICLES
NANOPARTICLES
SURFACES
GROWTH
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/11265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact