In this paper we present a partitioning method capable to manage transactions, namelyt uples of variable size of categorical data. We adapt the standard definition of mathematical distance used in the KMeans algorithm to represent dissimilarityam ong transactions, and redefine the notion of cluster centroid. The cluster centroid is used as the representative of the common properties of cluster elements. We show that using our concept of cluster centroid together with Jaccard distance we obtain results that are comparable in qualityw ith the most used transactional clustering approaches, but substantiallyi mprove their efficiency.

Clustering transactional data

Giannotti F;Manco G
2002

Abstract

In this paper we present a partitioning method capable to manage transactions, namelyt uples of variable size of categorical data. We adapt the standard definition of mathematical distance used in the KMeans algorithm to represent dissimilarityam ong transactions, and redefine the notion of cluster centroid. The cluster centroid is used as the representative of the common properties of cluster elements. We show that using our concept of cluster centroid together with Jaccard distance we obtain results that are comparable in qualityw ith the most used transactional clustering approaches, but substantiallyi mprove their efficiency.
2002
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-540-44037-6
Transactional clustering
File in questo prodotto:
File Dimensione Formato  
prod_91432-doc_128148.pdf

solo utenti autorizzati

Descrizione: Clustering Transactional Data
Tipologia: Versione Editoriale (PDF)
Dimensione 232.31 kB
Formato Adobe PDF
232.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/113187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact