In this paper we report on tight-binding calculations of lowest unoccupied molecular orbitals states for silicon ellipsoidal nanocrystals. The electronic structure has been calculated for different nanocrystal shapes either keeping constant or varying the number of silicon atoms. We have found that changing the ellipsoid aspect ratio a non-obvious energy level structure is obtained. The implications for the infrared optical transitions and their relationship with the polarization of the radiation involved are discussed.

A tight-binding study of LUMO states in ellipsoidal silicon nanocrystals

Cantele G;Ninno D;
2004

Abstract

In this paper we report on tight-binding calculations of lowest unoccupied molecular orbitals states for silicon ellipsoidal nanocrystals. The electronic structure has been calculated for different nanocrystal shapes either keeping constant or varying the number of silicon atoms. We have found that changing the ellipsoid aspect ratio a non-obvious energy level structure is obtained. The implications for the infrared optical transitions and their relationship with the polarization of the radiation involved are discussed.
2004
NANOSTRUCTURES
LUMINESCENCE
SEMICONDUCTOR QUANTUM DOTS
ELECTRONIC STRUCTURE
POROUS SILICON
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/11409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact