We present an experimental study of aging and thermal stability of Sc/Si multilayers deposited by magnetron sputtering. These multilayers have been characterized by using hard X-ray grazing incidence reflectometry at 0.154 nm and synchrotron radiation reflectometry at near normal incidence. The reflectivity was found to be stable after one year. A maximum reflectivity of 46% has been measured at 46 nm. However a 20% relative decrease of the reflectivity have been observed after one hour thermal annealing at 200°C. In order to improve thermal stability, we studied two different barriers layers (B4C and ScN). We compare the decrease of peak reflectivity and its wavelength shift after one hour annealing at 200°C under argon atmosphere. The best result was observed with the design using 0.3 nm B4C barrier layers. A relative decrease of 2% of the reflectivity peak has been observed with this design as compared to a 20% decrease without barrier layers.
Performances and stability of Se/Si multilayers with barrier layers for wavelengths around 46 nm
GIGLIA ANGELO;NANNARONE STEFANO;
2005
Abstract
We present an experimental study of aging and thermal stability of Sc/Si multilayers deposited by magnetron sputtering. These multilayers have been characterized by using hard X-ray grazing incidence reflectometry at 0.154 nm and synchrotron radiation reflectometry at near normal incidence. The reflectivity was found to be stable after one year. A maximum reflectivity of 46% has been measured at 46 nm. However a 20% relative decrease of the reflectivity have been observed after one hour thermal annealing at 200°C. In order to improve thermal stability, we studied two different barriers layers (B4C and ScN). We compare the decrease of peak reflectivity and its wavelength shift after one hour annealing at 200°C under argon atmosphere. The best result was observed with the design using 0.3 nm B4C barrier layers. A relative decrease of 2% of the reflectivity peak has been observed with this design as compared to a 20% decrease without barrier layers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


