We introduce an algorithm which estimates the number of circuits in a graph as a function of their length. This approach provides analytical results for the typical entropy of circuits in sparse random graphs. When applied to real-world networks, it allows to estimate exponentially large numbers of circuits in polynomial time. We illustrate the method by studying a graph of the Internet structure.

An algorithm for counting circuits: Application to real-world and random graphs

2006

Abstract

We introduce an algorithm which estimates the number of circuits in a graph as a function of their length. This approach provides analytical results for the typical entropy of circuits in sparse random graphs. When applied to real-world networks, it allows to estimate exponentially large numbers of circuits in polynomial time. We illustrate the method by studying a graph of the Internet structure.
2006
INFM
BELIEF PROPAGATION
NETWORKS
CYCLES
LOOPY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/115636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact