We consider the approximation of a microelectronic device corresponding to a $n^+-n-n^+$ diode consisting in a channel flanked on both sides by two highly doped regions. This is modelled through a system of equations: ballistic for the channel and drift-diffusion elsewhere. The overall coupling stems from the Poisson equation for the self-consistent potential. We propose an original numerical method for its processing, being realizable, explicit in time and nonnegativity preserving on the density. In particular, the boundary conditions at the junctions express the continuity of the current and don't destabilize the general scheme. At last, efficiency is shown by presenting results on test-cases of some practical interest.

A semiclassical coupled model for the transient simulation of semiconductor devices

Gosse L
2007

Abstract

We consider the approximation of a microelectronic device corresponding to a $n^+-n-n^+$ diode consisting in a channel flanked on both sides by two highly doped regions. This is modelled through a system of equations: ballistic for the channel and drift-diffusion elsewhere. The overall coupling stems from the Poisson equation for the self-consistent potential. We propose an original numerical method for its processing, being realizable, explicit in time and nonnegativity preserving on the density. In particular, the boundary conditions at the junctions express the continuity of the current and don't destabilize the general scheme. At last, efficiency is shown by presenting results on test-cases of some practical interest.
2007
Istituto Applicazioni del Calcolo ''Mauro Picone''
Hydrodynamical scaling
Wigner equation
Boundary conditions
open quantum system
time stabilization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/115809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact