Low-temperature specific heat measurements have been performed in porous silica xerogels with densities varying from 670 to 1730 kg m-3 to study the low-energy vibrational dynamics. The specific heat, Cp, shows a bump in the temperature range above 4 K, when reported in a plot of Cp/T3 against the temperature, T. The bump is almost independent of the sample density and is close to the boson peak observed in melt-quenched amorphous silica (a-SiO2). At temperatures <4 K, an additional contribution to that predicted by the Debye theory is observed. It follows an approximately linear temperature dependence (Cexc = aT1+v, v being equal to about 0.25). In the xerogel with the largest density, specific heat of about a factor 5 larger than that of a-SiO2 is measured, which increases with decreasing sample density. By comparison with the corresponding properties of a-SiO2, we conclude that the disorder introduced by the presence of pores does not measurably affect the excess density of vibrational states in a frequency range of the boson peak (BP), but increases the density of the two-level systems (TLS).

Low temperature specific heats of porous silica xerogels of low densities

Ferrari;Fe
2001

Abstract

Low-temperature specific heat measurements have been performed in porous silica xerogels with densities varying from 670 to 1730 kg m-3 to study the low-energy vibrational dynamics. The specific heat, Cp, shows a bump in the temperature range above 4 K, when reported in a plot of Cp/T3 against the temperature, T. The bump is almost independent of the sample density and is close to the boson peak observed in melt-quenched amorphous silica (a-SiO2). At temperatures <4 K, an additional contribution to that predicted by the Debye theory is observed. It follows an approximately linear temperature dependence (Cexc = aT1+v, v being equal to about 0.25). In the xerogel with the largest density, specific heat of about a factor 5 larger than that of a-SiO2 is measured, which increases with decreasing sample density. By comparison with the corresponding properties of a-SiO2, we conclude that the disorder introduced by the presence of pores does not measurably affect the excess density of vibrational states in a frequency range of the boson peak (BP), but increases the density of the two-level systems (TLS).
2001
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/116183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact