In this paper, for the "critical case" with two delays, we establish two relations between any two solutions y(t) and y*(t) for the Volterra integral equation of non-convolution type y(t)=f(t)+\int_{t-\tau}^{t-\delta}k(t,s)g(y(s))ds and a solution z(t) of the first order differential equation \dot z(t)=\beta(t)[z(t-\delta)-z(t-\tau) , and offer a sufficient condition that limt->+?(y(t)-y*(t))=0.

Convergence of solutions for two delays Volterra integral equations in the critical case

Vecchio A
2010

Abstract

In this paper, for the "critical case" with two delays, we establish two relations between any two solutions y(t) and y*(t) for the Volterra integral equation of non-convolution type y(t)=f(t)+\int_{t-\tau}^{t-\delta}k(t,s)g(y(s))ds and a solution z(t) of the first order differential equation \dot z(t)=\beta(t)[z(t-\delta)-z(t-\tau) , and offer a sufficient condition that limt->+?(y(t)-y*(t))=0.
2010
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto Applicazioni del Calcolo ''Mauro Picone''
Volterra integral equation with delays
Convergence of solution
Critical case
Unbounded solution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/116573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact