A graphic processing unit (GPU) implementation of the multicomponent lattice Boltzmann equation with multirange interactions for soft-glassy materials ["glassy" lattice Boltzmann (LB)] is presented. Performance measurements for flows under shear indicate a GPU/CPU speed up in excess of 10 for 1024(2) grids. Such significant speed up permits to carry out multimillion time-steps simulations of 1024(2) grids within tens of hours of GPU time, thereby considerably expanding the scope of the glassy LB toward the investigation of long-time relaxation properties of soft-flowing glassy materials.

Graphics processing unit implementation of lattice Boltzmann models for flowing soft systems

Succi S
2010

Abstract

A graphic processing unit (GPU) implementation of the multicomponent lattice Boltzmann equation with multirange interactions for soft-glassy materials ["glassy" lattice Boltzmann (LB)] is presented. Performance measurements for flows under shear indicate a GPU/CPU speed up in excess of 10 for 1024(2) grids. Such significant speed up permits to carry out multimillion time-steps simulations of 1024(2) grids within tens of hours of GPU time, thereby considerably expanding the scope of the glassy LB toward the investigation of long-time relaxation properties of soft-flowing glassy materials.
2010
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/116578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 30
social impact