For G open bounded subset of R^2 with C^1 boundary, we study the regularity of the variational solution u in H^1_0(G) to the quasilinear elliptic equation of Leray-Lions type: -div A(x,Du)=f , when f belongs to the Zygmund space L(log L)^{\delta}, \delta>0. As an interpolation between known results for \delta=1/2 and \delta=1 of [Stampacchia] and [Alberico-Ferone], we prove that |Du| belongs to the Lorentz space L^{2, 1/\delta}(G) for \delta in [1/2, 1].

Regularity results for planar quasilinear equations with right-hand side in L(log L)^{\delta}

Alberico A;
2010

Abstract

For G open bounded subset of R^2 with C^1 boundary, we study the regularity of the variational solution u in H^1_0(G) to the quasilinear elliptic equation of Leray-Lions type: -div A(x,Du)=f , when f belongs to the Zygmund space L(log L)^{\delta}, \delta>0. As an interpolation between known results for \delta=1/2 and \delta=1 of [Stampacchia] and [Alberico-Ferone], we prove that |Du| belongs to the Lorentz space L^{2, 1/\delta}(G) for \delta in [1/2, 1].
2010
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/116606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact