The activity of different lipase (from Pseudomonas cepacia) forms, such as crude powder (crude PC), purified and lyophilized with PEG (PEG + PC), covalently linked to PEG (PEG-PC), cross-linked enzyme crystals (CLEC-PC), and immobilized in Sol-Gel-AK (Sol-Gel-AK-PC) was determined, at various water activities (a(w)), in carbon tetrachloride, benzene and 1,4-dioxane. The reaction of vinyl butyrate with l-octanol was employed as a model and both transesterification (formation of 1-octyl butyrate) and hydrolysis (formation of butyric acid from vinyl butyrate) rates were determined. Both rates depended on the lipase form, solvent employed, and a(w) value. Hydrolysis rates always increased as a function of a(w), while the optimum of a(w) for transesterification depended on the enzyme form and nature of the solvent. At proper a(w), some lipase forms such as PEG + PC, PEG-PC, and Sol-Gel-AK-PC had a total activity in organic solvents (transesterification plus hydrolysis) which was close to (39 and 48%) or even higher than (130%) that displayed by the same amount of lipase protein in the hydrolysis of tributyrin-one of the substrates most commonly used as standard for the assay of lipase activity-in aqueous buffer. Instead, CLEC-PC and crude PC were much less active in organic solvents (2 and 12%) than in buffer. The results suggest that enzyme dispersion and/or proper enzyme conformation (favored by interaction with PEG or the hydrophobic Sol-Gel-AK matrix) are essential for the expression of high lipase activity in organic media.

Optimization of Pseudomonas cepacia lipase preparations for catalysis in organic solvents

Secundo F;Carrea G;
1999

Abstract

The activity of different lipase (from Pseudomonas cepacia) forms, such as crude powder (crude PC), purified and lyophilized with PEG (PEG + PC), covalently linked to PEG (PEG-PC), cross-linked enzyme crystals (CLEC-PC), and immobilized in Sol-Gel-AK (Sol-Gel-AK-PC) was determined, at various water activities (a(w)), in carbon tetrachloride, benzene and 1,4-dioxane. The reaction of vinyl butyrate with l-octanol was employed as a model and both transesterification (formation of 1-octyl butyrate) and hydrolysis (formation of butyric acid from vinyl butyrate) rates were determined. Both rates depended on the lipase form, solvent employed, and a(w) value. Hydrolysis rates always increased as a function of a(w), while the optimum of a(w) for transesterification depended on the enzyme form and nature of the solvent. At proper a(w), some lipase forms such as PEG + PC, PEG-PC, and Sol-Gel-AK-PC had a total activity in organic solvents (transesterification plus hydrolysis) which was close to (39 and 48%) or even higher than (130%) that displayed by the same amount of lipase protein in the hydrolysis of tributyrin-one of the substrates most commonly used as standard for the assay of lipase activity-in aqueous buffer. Instead, CLEC-PC and crude PC were much less active in organic solvents (2 and 12%) than in buffer. The results suggest that enzyme dispersion and/or proper enzyme conformation (favored by interaction with PEG or the hydrophobic Sol-Gel-AK matrix) are essential for the expression of high lipase activity in organic media.
1999
WATER ACTIVITY
ENZYMATIC CATALYSIS
NONAQUEOUS SOLVENTS
LIPOPROTEIN-LIPASE
MEDIA
File in questo prodotto:
File Dimensione Formato  
prod_228702-doc_56510.pdf

solo utenti autorizzati

Descrizione: Optimization of Pseudomonas cepacia lipase preparations for catalysis in organic solvents
Dimensione 247.58 kB
Formato Adobe PDF
247.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/116728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact