Disulfide bonds are required for the stability and function of many proteins. A large number of thiol-disulfide oxidoreductases, belonging to the thioredoxin superfamily, catalyze protein disulfide bond formation in all living cells, from bacteria to humans. The protein disulfide isomerase (PDI) is the eukaryotic factor that catalyzes oxidative protein folding in the endoplasmic reticulum; by contrast, in prokaryotes, a family of disulfide bond (Dsb) proteins have an equivalent outcome in the bacterial periplasm. Recently the results from genome analysis suggested an important role for disulfide bonds in the structural stabilization of intracellular proteins from thermophiles. A specific protein disulfide oxidoreductase (PDO) has a key role in intracellular disulfide shuffling in thermophiles. Here we focus on the structural and functional characterization of PDO correlated with the multifunctional eukaryotic PDI. In addition, we highlight the chimeric nature of the machinery for oxidative protein folding in thermophiles in comparison with the mesophilic bacterial and eukaryal counterparts

The Machinery for Oxidative Protein Folding in Thermophiles

Pedone E;
2008

Abstract

Disulfide bonds are required for the stability and function of many proteins. A large number of thiol-disulfide oxidoreductases, belonging to the thioredoxin superfamily, catalyze protein disulfide bond formation in all living cells, from bacteria to humans. The protein disulfide isomerase (PDI) is the eukaryotic factor that catalyzes oxidative protein folding in the endoplasmic reticulum; by contrast, in prokaryotes, a family of disulfide bond (Dsb) proteins have an equivalent outcome in the bacterial periplasm. Recently the results from genome analysis suggested an important role for disulfide bonds in the structural stabilization of intracellular proteins from thermophiles. A specific protein disulfide oxidoreductase (PDO) has a key role in intracellular disulfide shuffling in thermophiles. Here we focus on the structural and functional characterization of PDO correlated with the multifunctional eukaryotic PDI. In addition, we highlight the chimeric nature of the machinery for oxidative protein folding in thermophiles in comparison with the mesophilic bacterial and eukaryal counterparts
2008
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/117313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact