We present one-dimensional (1D) stability analysis of a recently proposed method to filter and control localized states of the Bose–Einstein condensate (BEC), based on novel trapping techniques that allow one to conceive methods to select a particular BEC shape by controlling and manipulating the external potential well in the three-dimensional (3D) Gross–Pitaevskii equation (GPE). Within the framework of this method, under suitable conditions, the GPE can be exactly decomposed into a pair of coupled equations: a transverse two-dimensional (2D) linear Schrödinger equation and a one-dimensional (1D) longitudinal nonlinear Schrödinger equation (NLSE) with, in a general case, a time-dependent nonlinear coupling coefficient. We review the general idea how to filter and control localized solutions of the GPE. Then, the 1D longitudinal NLSE is numerically solved with suitable non-ideal controlling potentials that differ from the ideal one so as to introduce relatively small errors in the designed spatial profile. It is shown that a BEC with an asymmetric initial position in the confining potential exhibits breather-like oscillations in the longitudinal direction but, nevertheless, the BEC state remains confined within the potential well for a long time. In particular, while the condensate remains essentially stable, preserving its longitudinal soliton-like shape, only a small part is lost into “radiation”.

Stability Analysis of Filtering and Controlling the Solitons in Bose-Einstein Condensates

S De Nicola;
2006

Abstract

We present one-dimensional (1D) stability analysis of a recently proposed method to filter and control localized states of the Bose–Einstein condensate (BEC), based on novel trapping techniques that allow one to conceive methods to select a particular BEC shape by controlling and manipulating the external potential well in the three-dimensional (3D) Gross–Pitaevskii equation (GPE). Within the framework of this method, under suitable conditions, the GPE can be exactly decomposed into a pair of coupled equations: a transverse two-dimensional (2D) linear Schrödinger equation and a one-dimensional (1D) longitudinal nonlinear Schrödinger equation (NLSE) with, in a general case, a time-dependent nonlinear coupling coefficient. We review the general idea how to filter and control localized solutions of the GPE. Then, the 1D longitudinal NLSE is numerically solved with suitable non-ideal controlling potentials that differ from the ideal one so as to introduce relatively small errors in the designed spatial profile. It is shown that a BEC with an asymmetric initial position in the confining potential exhibits breather-like oscillations in the longitudinal direction but, nevertheless, the BEC state remains confined within the potential well for a long time. In particular, while the condensate remains essentially stable, preserving its longitudinal soliton-like shape, only a small part is lost into “radiation”.
2006
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Solutions of wave equations: bound states
SOLITONS
BOSE-EINSTEIN CONDENSATES
TUNNELLING EFFECTS
STABILITY ANALYSIS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/117517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact