Poly (dithienothiophene)s (PDTTs), low band-gap conjugated polymers with poly thiophene-like chain where an aromatic thienothiophene moiety is fused to each thiophene ring, were studied using Raman spectroscopy, photoinduced infrared absorption, as well as attenuated total reflection Fourier transform infrared (ATR-FTIR) and electron spin resonance (ESR) spectroelectrochemistry. The spectroelectrochemical studies were performed in situ during p- and n-doping (electrochemical oxidation and reduction, respectively). Raman lines of the pristine polymers are compared to infrared active vibration (IRAV) bands due to the charge carriers injected by the electrochemical doping processes or by illumination. The different pi-electron distribution along the polythiophene-like chain, which determines the different band-gap sizes, also account for the different lattice relaxations and vibrational behaviors shown by these polymers. By means of in situ ESR spectroscopy, the formation of paramagnetic positive and negative charge carriers with unusually high g-factors could be proved.

Positive and negative charge carriers in doped or photoexcited polydithienothiophenes: A comparative studylectron spin resonance spectroscopy

Luzzati S;Catellani M;
2002

Abstract

Poly (dithienothiophene)s (PDTTs), low band-gap conjugated polymers with poly thiophene-like chain where an aromatic thienothiophene moiety is fused to each thiophene ring, were studied using Raman spectroscopy, photoinduced infrared absorption, as well as attenuated total reflection Fourier transform infrared (ATR-FTIR) and electron spin resonance (ESR) spectroelectrochemistry. The spectroelectrochemical studies were performed in situ during p- and n-doping (electrochemical oxidation and reduction, respectively). Raman lines of the pristine polymers are compared to infrared active vibration (IRAV) bands due to the charge carriers injected by the electrochemical doping processes or by illumination. The different pi-electron distribution along the polythiophene-like chain, which determines the different band-gap sizes, also account for the different lattice relaxations and vibrational behaviors shown by these polymers. By means of in situ ESR spectroscopy, the formation of paramagnetic positive and negative charge carriers with unusually high g-factors could be proved.
2002
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_232039-doc_58255.pdf

solo utenti autorizzati

Descrizione: Positive and negative charge carriers in doped or photoexcited polydithienothiophenes
Dimensione 131.6 kB
Formato Adobe PDF
131.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/117692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact