A series of polyurethane polymers was synthesized with increasing proportions of silicone in the form of polydimethylsiloxane (PDMS) utilised as a cross-linking agent, based on an aromatic, non-biostable polyetherurethane (PEtU). Eight formulations ranging from 0-50% PDMS were constructed into porous and non-porous films. These were implanted subcutaneously in rats, both unstrained and 100% strained, for 3 and 6 months. Degradation was determined by FTIR-ATR. Porous films were implanted for 6 and 12 months intramuscularly in both rats and rabbits. These were explanted and examined for inflammatory cell markers by immunohistochemistry. Both low and high percentages of siloxane gave rise to increased degradation, with 20-40% PDMS resulting in the least degradation. Infrared spectral changes correlated well with both visual examination and observation by SEM. Changes to the concentration of siloxane gave rise to differences in the thickness of fibroblastic capsule and infiltration of inflammatory cells in both films & scaffolds. Cellular infiltration was greatest in the films with lower siloxane concentrations. Macrophage activation (MHC-I & MHC-II expression) was least in the higher siloxane variants. It is concluded that by varying the siloxane content in the PEtU matrix we can obtain an acceptable inflammatory response with a relatively short degradation time.

Inflammatory response to a novel series of siloxane-crosslinked polyurethane elastomers having controlled biodegradation

GIORGIO SOLDANI;
2005

Abstract

A series of polyurethane polymers was synthesized with increasing proportions of silicone in the form of polydimethylsiloxane (PDMS) utilised as a cross-linking agent, based on an aromatic, non-biostable polyetherurethane (PEtU). Eight formulations ranging from 0-50% PDMS were constructed into porous and non-porous films. These were implanted subcutaneously in rats, both unstrained and 100% strained, for 3 and 6 months. Degradation was determined by FTIR-ATR. Porous films were implanted for 6 and 12 months intramuscularly in both rats and rabbits. These were explanted and examined for inflammatory cell markers by immunohistochemistry. Both low and high percentages of siloxane gave rise to increased degradation, with 20-40% PDMS resulting in the least degradation. Infrared spectral changes correlated well with both visual examination and observation by SEM. Changes to the concentration of siloxane gave rise to differences in the thickness of fibroblastic capsule and infiltration of inflammatory cells in both films & scaffolds. Cellular infiltration was greatest in the films with lower siloxane concentrations. Macrophage activation (MHC-I & MHC-II expression) was least in the higher siloxane variants. It is concluded that by varying the siloxane content in the PEtU matrix we can obtain an acceptable inflammatory response with a relatively short degradation time.
2005
Istituto di Fisiologia Clinica - IFC
Elastomers
Histology
Scanning electron microscopy
Cellular infiltration
Inflammato
Macrophage activation
Polydimethylsioxane (PDMS)
Polyurethanes
Biodegradation
File in questo prodotto:
File Dimensione Formato  
prod_226944-doc_55609.pdf

accesso aperto

Descrizione: Inflammatory response to a novel series of siloxane-crosslinked polyurethane elastomers having controlled biodegradation
Tipologia: Versione Editoriale (PDF)
Dimensione 444.74 kB
Formato Adobe PDF
444.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/117967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact