We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits.
rf SQUID system as tunable flux qubit
B Ruggiero;CGranata;A Vettoliere;S Rombetto;M Russo;R Russo;
2006
Abstract
We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.