Dynamic force microscopy ( DFM) with the self- oscillator ( SO) method allows reasonably high scanning rates even with high Q- factors of the resonant force sensor, typical of cantilevers in ultra- high vacuum and of quartz tuning forks. However, due to simpler interpretation of force spectroscopy measurements, small oscillation amplitudes ( sub- nm level) are generally preferred. In applications like 'apertureless' scanning near- field optical microscopy ( SNOM), oscillation amplitudes of the order of 5 - 10 nm are needed to increase optical sensitivity and to apply standard optical artefact suppression methods. This motivates the study of the behaviour of tuning forks driven at such high amplitudes, as compared to usual air- operated cantilevers. Both constant- excitation- amplitude ( CE) and constant- oscillation- amplitude ( CA) modes of SO- DFM are analysed, since the CA mode is more convenient for SNOM applications, denoting remarkable differences. In particular, possible instability effects, previously found in CE mode, are not anticipated for CA mode. It is shown how resonance and approach (' isophase') curves in both modes can be conveniently described in terms of the usual ` normalized frequency shift' gamma and of a ` normalized gain' eta, defined as a measurement of surface dissipation.

Dynamic force microscopy with quartz tuning forks at high oscillation amplitudes

Labardi M
2007

Abstract

Dynamic force microscopy ( DFM) with the self- oscillator ( SO) method allows reasonably high scanning rates even with high Q- factors of the resonant force sensor, typical of cantilevers in ultra- high vacuum and of quartz tuning forks. However, due to simpler interpretation of force spectroscopy measurements, small oscillation amplitudes ( sub- nm level) are generally preferred. In applications like 'apertureless' scanning near- field optical microscopy ( SNOM), oscillation amplitudes of the order of 5 - 10 nm are needed to increase optical sensitivity and to apply standard optical artefact suppression methods. This motivates the study of the behaviour of tuning forks driven at such high amplitudes, as compared to usual air- operated cantilevers. Both constant- excitation- amplitude ( CE) and constant- oscillation- amplitude ( CA) modes of SO- DFM are analysed, since the CA mode is more convenient for SNOM applications, denoting remarkable differences. In particular, possible instability effects, previously found in CE mode, are not anticipated for CA mode. It is shown how resonance and approach (' isophase') curves in both modes can be conveniently described in terms of the usual ` normalized frequency shift' gamma and of a ` normalized gain' eta, defined as a measurement of surface dissipation.
2007
INFM
FIELD OPTICAL MICROSCOPY
APERTURELESS MICROSCOPY
ATOMIC-RESOLUTION
NONCONTACT
SENSOR
File in questo prodotto:
File Dimensione Formato  
prod_1888-doc_21261.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Dimensione 477.79 kB
Formato Adobe PDF
477.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/118189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact