Graphene is described at low energy by a massless Dirac equation whose eigenstates have definite chirality. We show that the tendency of Coulomb interactions in lightly doped graphene to favor states with larger net chirality leads to suppressed spin and charge susceptibilities. Our conclusions are based on an evaluation of graphene's exchange and random-phase-approximation correlation energies. The suppression is a consequence of the quasiparticle chirality switch which enhances quasiparticle velocities near the Dirac point.

Chirality and correlations in graphene

Polini M;
2007

Abstract

Graphene is described at low energy by a massless Dirac equation whose eigenstates have definite chirality. We show that the tendency of Coulomb interactions in lightly doped graphene to favor states with larger net chirality leads to suppressed spin and charge susceptibilities. Our conclusions are based on an evaluation of graphene's exchange and random-phase-approximation correlation energies. The suppression is a consequence of the quasiparticle chirality switch which enhances quasiparticle velocities near the Dirac point.
2007
INFM
2-DIMENSIONAL ELECTRON-GAS
GRAPHENE
COMPRESSIBILITY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/118306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact