In this work, PFCNN, a distributed method for computing a consistent subset of very large data set for the nearest neighbor classification rule is presented. In order to cope with the communication overhead typical of distributed environments and to reduce memory requirements, different variants of the basic PFCNN method are introduced. An analysis of spatial cost, CPU cost, and communication overhead is accomplished for all the algorithms. Experimental results, performed on both synthetic and real very large data sets, revealed that these methods can be profitably applied to enormous collections of data. Indeed, they scale-up well and are efficient in memory consumption, confirming the theoretical analysis, and achieve noticeable data reduction and good classification accuracy. To the best of our knowledge, this is the first distributed algorithm for computing a training set consistent subset for the nearest neighbor rule.

Distributed Nearest Neighbor Based Condensation of Very Large Datasets

Angiulli Fabrizio;Folino Gianluigi
2007

Abstract

In this work, PFCNN, a distributed method for computing a consistent subset of very large data set for the nearest neighbor classification rule is presented. In order to cope with the communication overhead typical of distributed environments and to reduce memory requirements, different variants of the basic PFCNN method are introduced. An analysis of spatial cost, CPU cost, and communication overhead is accomplished for all the algorithms. Experimental results, performed on both synthetic and real very large data sets, revealed that these methods can be profitably applied to enormous collections of data. Indeed, they scale-up well and are efficient in memory consumption, confirming the theoretical analysis, and achieve noticeable data reduction and good classification accuracy. To the best of our knowledge, this is the first distributed algorithm for computing a training set consistent subset for the nearest neighbor rule.
2007
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/118943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 27
social impact