A biclustering algorithm, based on a greedy technique and enriched with a local search strategy to escape poor local minima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a gain function. The gain function combines the mean squared residue, the row variance, and the size of the bicluster. Different strategies to escape local minima are introduced and compared. Experimental results on several microarray data sets show that the method is able to find significant biclusters, also from a biological point of view.
Random Walk Biclustering for Microarray Data
Eugenio Cesario;Clara Pizzuti
2008
Abstract
A biclustering algorithm, based on a greedy technique and enriched with a local search strategy to escape poor local minima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a gain function. The gain function combines the mean squared residue, the row variance, and the size of the bicluster. Different strategies to escape local minima are introduced and compared. Experimental results on several microarray data sets show that the method is able to find significant biclusters, also from a biological point of view.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.